世界科技研究与发展 ›› 2025, Vol. 47 ›› Issue (S2): 30-41.doi: 10.16507/j.issn.1006-6055.2025.04.102 cstr: 32308.14.1006-6055.2025.04.102

• 科技前沿与态势 • 上一篇    下一篇

基于CNN-BiLSTM的河口区域潮位预测

汪晓雪 葛建忠   

  1. 华东师范大学河口海岸全国重点实验室
  • 出版日期:2025-12-23 发布日期:2025-12-23
  • 基金资助:
    国家重点研究计划“复合致灾因子下河口海岸堤防安全风险评估及预警关键技术研究”(2022YFE0117500)

Estuarine Tidal Level Prediction Based on CNN-BiLSTM Model

WANG Xiaoxue GE Jianzhong   

  1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University
  • Online:2025-12-23 Published:2025-12-23

摘要: 在海洋科学领域中,潮位预测是重要的研究内容之一,具有广泛的应用价值。随着机器学习技术的发展,机器学习方法已经逐渐成为潮位预测的一种新途径。为进一步探索机器学习方法在长期潮位预测中的应用,本文搭建了一种由双向长短期记忆网络为架构的机器学习模型,将长江口区域共8个站点的逐小时潮位数据分别输入模型中进行训练,使用卷积神经网络层对14天的历史潮位周期性信息进行提取,得到各站点的潮位预测模型。实验结果表明,模型在120小时预测任务中的平均均方根误差和平均绝对误差分别低于20cm和17cm,相关系数高于0.98。研究结果验证了改进后的神经网络模型在长期潮位预测中的有效性,能够显著提升预测精度,并有效缓解现有模型在潮位周期性特征提取和长期预测累积误差方面的不足。

关键词: 潮位预测;机器学习;神经网络模型;双向长短期记忆网络;卷积神经网络

Abstract: In the field of ocean science, tidal level prediction is an important research topic with wide application value. With the development of machine learning technology, machine learning methods have gradually become a new approach to tidal level prediction. To further explore the application of machine learning methods in long-term tidal level prediction, this paper constructs a machine learning model based on the Bidirectional Long Short-Term Memory (BiLSTM) network architecture. The hourly tidal level data from a total of 8 stations in the Changjiang Estuary region were input into the model for training, and a convolutional neural network layer was used to extract the periodic information of historical tidal levels over a period of 14 days, resulting in tidal level prediction models for each station. The experimental results show that in the 120-hour prediction task, the average Root Mean Square Error and Mean Absolute Error of the model are both below 20 cm and 17 cm, respectively, with a correlation coefficient higher than 0.98. The results demonstrate that the improved neural network model is effective in long-term tidal level prediction, significantly improving prediction accuracy and effectively mitigating the deficiencies of existing models in extracting tidal periodic features and addressing cumulative errors in long-term predictions.

Key words: Tidal Level Prediction; Machine Learning; Neural Network Model; BiLSTM; CNN