›› 2016, Vol. 38 ›› Issue (6): 1311-1314.doi: 10.16507/j.issn.1006-6055.2016.06.036
张芳 吴雨桥
摘要:
为了准确、快速地对铁路物流需求量进行预测,针对现有铁路物流需求量预测模型存在的问题,采用梯度提升算法对分类与回归树算法进行集成,提出一种GB-CART集成算法。以1990~2014年的铁路物流需求量为研究对象,选取预测年份前3年的铁路物流需求量作为模型输入,预测年份铁路物流需求量作为模型输出,采用GB-CART集成算法进行仿真实验,并与单一CART、SVR、RBF和LR模型进行比较。结果表明:GB-CART模型的预测效果与单一CART模型相比得到了大幅度提升,且预测精度高于SVR、RBF和LR,验证了所提出模型的有效性及准确性。
中图分类号: